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A method of estimating the critical cavitation number for marine propeller blades is proposed. This method is based on the 
reduction of the three-dimensional unsteady problem to the three-dimensional steady problem and a series of two-dimensional 
unsteady problems. 

One of the principal characteristics of marine propellers is the critical cavitation number O'i, since it determines the speed 
at which cavitation bursts, accompanied by their well-known negative effects, occur on or near the propeller blades. The lack 
of satisfactory methods of theoretically determining the critical cavitation number has led to the long-standing use in engineering 
practice of a method based on the adaptation to natural conditions of the results of model experiments involving the visual 
recording of the onset of cavitation (so-called quasiacoustic testing, which gives the dependence of ai on J =  V a / n D  , where D 
is the diameter of  the propeller, n is its speed, and V a is the approach-stream velocity). 

When this approach is adopted, two main difficulties are encountered. The first is associated with the presence of strong 
scale effects, the second with the difference in the operating conditions of a model propeller in a steady water tunnel flow and 

a real propeller in an unsteady natural flow when the velocities vary during each revolution even when n=const, because the 
blades cut the boundary layer or wake of the hull (see, for example, the illustrations on pp. 225 and 515 of [1]). 

In order to overcome these difficulties, it is usual to make three assumptions [1] in explicit or implicit form: 1) for the 
same J the cavitation modes developing on the propeller and the model are identical; 2) the critical cavitation numbers are 
proportional to a power of the Reynolds number a i -  Re m, the parameter m being determined by the cavitation mode and being 
independent of  the blade geometry; 3) the quasisteady approach is valid, i.e., the values of a i can be determined for a steady 
uniform flow over the propeller whose velocity is equal to the extremal of the instantaneous values of the velocity of the 
unsteady flow impinging on the blades. 

However, these assumptions have proved to be applicable only to propellers with an optimum (in terms of its efficiency) 
law of load distribution along the blade radius. At the same time, engineering practice has led to the unloading of the end 
sections and the error of the above-mentioned empirical approach has increased unacceptably: even the assumption concerning 

the correspondence of the cavitation modes of the model and the real propeller is no longer satisfied; under natural conditions 
the blades begin to cavitate and under model conditions their tip vortices. 

The calculation methods [2] have so far made it possible to overcome only the difficulties associated with the scale effects 
attributable to viscosity and surface tension. It is difficult to use the Fourier series apparatus [3], traditional in propeller theory, 
for investigating unsteady effects, since the real approach streams are very complex: an idea of this can be gained from Fig. 
1, the chain curves at the top of which represent the results of measuring the axial velocity component of the approach stream 
at the after end of a ship model for relative radii r whose decupled values are indicated by the numbers adjacent to the curves; 
0 is the polar angle in the cylindrical coordinate system moving with the propeller hub, and V a has been divided by the ship's 

speed. In order to describe such flows it is necessary to retain many harmonics, the volume of computation increasing with their 
number, and it becomes very complicated to use the above-mentioned approach to construct the blade pressure distributions. 

Below, it is shown that there exists a possibility of estimating the effect of  the unsteadiness of the flow impinging on the 
blades on the values of ai by slightly complicating the procedure for calculating the pressure on the blades as compared with 
[2]: it is sufficient to separate the three-dimensional and unsteady effects. For not very broad zones of  sharp variation of V a the 
lattice and finite-span effects will vary only slightly during a revolution, making an almost constant contribution to the 
nonuniformity of  the flow impinging on the profile of the cylindrical section of the blade. Then the changes in the dimensionless 
pressure coefficient Cp can be found from the solution of the plane potential problem for that profile in an oncoming flow whose 
unsteadiness is associated only with the oscillations of the velocity component normal to the chord. 

As in [2], the pressure thus determined is used for calculating the shape of the cavities for given values of the Reynolds 
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Re and Weber We numbers; but here it is necessary to determine only the greatest o f  the values of  the cavitation number 

a=2po-l(TrnD)-2at which a cavity can exist anywhere on the blade for fixed values of  D, n and the pressure difference 

between the undisturbed flow and the cavity p(r). The quantity ~rnD is used in constructing the cavitation number a because it 

is precisely the rate of  rotation of  the end section of the blades that best characterizes the dynamic head of  the flow passing over 

them. 

Since it is proposed to investigate the initial stages of  cavitation, characterized by relatively small and thin cavities which 

do not seriously modify the pressure on the blades as compared with cavitationiess flow at the same values of  n and D and the 

same V a, we can divide the problem into two parts as described in [2]. The first part involves seeking the pressure diagram for 

cavitationless flow over the blades, complicated in this case by the need to take into account the unsteadiness of  the flow, while 
the second involves calculating the shape of  the cavities for known values of  Re and We. Both parts of  the problem are solved 
by means o f  approximate methods. The results of  this approach are compared with those o f  the quasisteady approach and the 

possibilities o f  the latter in both calculations and experiments are analyzed. 
1. As usual in propeller theory [1, 3], it is assumed that the propeller introduces into the flow only potential disturbances 

and that for any cylindrical blade section for a given value of J =  V*/nD and uniform flow conditions the resulting velocities can 

be calculated by the same methods of  three-dimensional potential theory as in [1--3]. Then the two-dimensional problem is 

solved in the plane of  that section and the oncoming flow potential is found in the form cI ,*=x+ay+bxy.  The coefficients of  

this sum are so chosen that in this plane flow the profile has the same lift coefficient Cy and the same minimum Cp as a blade 
in a three-dimensional uniform flow. 

As may be seen from Fig. 2, in such a two-dimensional potential flow (continuous curves) the Cp distribution near the 
pressure minimum on a typical propeller profile is similar to that realized at that point on the blade in a three-dimensional flow 
(broken curves); as abscissa we use the arc s ~, divided by the chord length C, which is counted off from the forward stagnation 
point. Curves 1--3 relate to the values J=0 .51 ,  0.6, and 0.7 and Cy=0.23, 0.21, and 0.17; to these values there correspond 
the coefficients a=0 .164 ,  O. 143, and 0.133 and b=  -0 .199 ,  - 0 .  t75, and -0 .173 .  The potential if* was determined near the 

profile using these coefficients, and it can be continued to infinity, for example, with a discontinuity in the derivatives but with 
conservation o f  the value of  Cy. 

For small Cy, for which the extremum of  Cp is less sharp, its positions in the plane flow thus constructed and in the three- 
dimensional flow around the blade cannot be made to coincide so accurately as in Fig. 2 and the displacement may be of  the 

order of  one hundredth of  the chord; however, under experimental conditions the cavities typical of  these regimes are attached 
to the blade with approximately the same scatter and consequently the displacement should not have much significance in the 
problem in question. 
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After finding the coefficients in the expression for ,I~*, by analogy with the approaches used in propeller theory [1, 3], we 
determine the Cp diagrams by calculating the unsteady flow over the blades in a two-dimensional nonuniform oncoming flow 
whose components can be represented in the form: 

Uo= l + by, Vo = a + bx + (1.1) 
[ v *~ + ( ~ n r D )  ~ 10,5 

Here, V* is the average value of V a. In (1.1) only V a depends on time, this function - -  the result of measurements made 
in the ship's boundary layer - -  not being harmonic. In order to formulate the problem of finding the Cp on the profile as a 

boundary-value problem of potential theory it is necessary to approximate the velocities (1.1) by means of harmonic functions. 
No attempt should be made to reconstruct the potential in the plane of the profile x, y from two arbitrary components of  the 
velocity on the profile or its chord, since such attempts were shown to be incorrect as long ago as 1922 [4]. 

The approximating potential can be constructed by means of dipoles distributed along the chord, whose axes are orthogonal 
to the chord and whose intensities depend only on the distribution of the instantaneous values of  V a along it. The potential 
oncoming flow thus constructed is almost three-dimensional around relatively thin propeller profiles, since the first of conditions 
(1.1) is infringed only by an amount of the order of (y/C) 2. Accordingly, the calculation of the unsteady flow over the profile 
will be carried out by means of a generalization of the vortex method [5] and reduces to the solution of a system of integral 

equations in the intensities of the attached vortices 7, distributed over the surface of the profile S, and the free vortices F shed 
from its trailing edge and traveling in the unsteady flow along a departing ray at the velocity indicated in the denominator of 
the fraction in expression (1.1): 

~' 1 , Cos(N,R) 
+ ~ c ~ ,  ~ R ds  + ~;, r,  o ~  = ~r - ~V~Vo (1.2) 

f 7dS + ~, F, = const (1.3) 
S l 

?, {1 - 2 e }  = 2~/(z*-~): ,  {1  - e}  (1.4) 

Here, R is the distance from the arbitrary point to the check point on S; N={Nx, Ny} is the outward normal to S, fl is the 

angle of  taper of the trailing edge, 0 < e,~ 1, the chord length is taken equal to unity, and '~ is the free vortex stream function. 

At each check point on the profile we consider Eq. (1.2), which is equivalent to its impermeability condition. Condition 
(1.3) is the law of conservation of total vorticity in the two-dimensional flow, and expression (1.4), a consequence of the 
Joukowski--Chaplygin condition, is the asymptotic law for the velocity as the trailing edge is approached [6]. 

After solving (1.2)--(1.4), we calculate the pressure on S at each moment of time t by means of the Lagrange--Cauchy 
integral. It should be noted that, although it leads to certain errors, the assumption that the free vortices depart along the above- 
mentioned ray makes it possible to reduce the computation volume by not less than an order, since it proved to be possible in 

the linear algebraic system of the form AT+BF=f( t )  substituted in calculating (1.2)--(1.4) to calculate the matrices A and B 
once only and to make only one calculation for the matrices for determining the contribution of the vortices to ,O~/&; moreover, 
near the leading edge, where cavitation begins, these errors are only small. 

Thus, the solution of the very complex three-dimensional unsteady problem reduces to the solution of the three-dimensional 
steady problem and a series of two-dimensional unsteady problems of approximately the same difficulty as the steady problem 

[5]. In the method proposed all the unsteady effects relating to the variation of the pressure on the blade are analyzed in the two- 
dimensional approximation. At the same time, the traditional method of taking into account the effect of  oncoming flow 
nonuniformity by constructing at each moment of  time a new "equivalent profile" with its maximum curvature modified in 
accordance with the Morgan correction [3] is impractical because of the need to recalculate the matrices A and B for each r, 
but even more important is the fact that the separate allowance for the effect of the profile thickness and curvature distributions 
made in the traditional approach is justified only for small induced velocities, i.e., when [ Cpl ,~ 1. However, in seeking the 
critical cavitation number the parts of  the profile on which Cp is of the order of unity are the most important. 

Some examples of the calculation of the characteristics of unsteady flows are presented in Fig. 1. In the middle of the 
figure we have plotted the dependence on 0 of the coefficient a D at the point of maximum underpressure on the suction side of 
the profile previously used in constructing Fig. 2 ( - a  D is the minimum value of a calculated in an ideal fluid for which it is 
identified with the critical cavitation number), while at the bottom of the figure we have plotted the function Cy(0). The Va(O ) 

distribution in the wake of the airfoil used in the laboratory experiments to create an unsteady oncoming flow is represented 
by the continuous curve at the top of Fig. 1. The dependence of Cy and a D on 0 for a blade in this wake is given for the same 
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values o f  J and with the same numbering as the results presented in Fig. 2. 

For the oncoming flow characteristics presented in Fig. 1 the analogous curves for a ship's hull are given for J = 0 . 9  and 

numbered 7. The azimuthal angle 0 in Fig. 1 is proportional to time. When the leading edge of  the profile crosses the zones 

of minimum V a in the wake of  the airfoil at 0 = 90  and 270 ~ , cr D peaks sharply. Smaller peaks and a maximum increase in Cy 
are observed when these zones are crossed by the trailing edge (for the given parameter rD/c at 0---3 and 183~ Clearly, in 
the unsteady flow the pressure minimum is not determined by the instantaneous value of  the lift force. 

A comparison [7] of the values of  Cp calculated by the method described and the experimental values for a profile in a 
pulsating flow indicates that the accuracy of the calculations is satisfactory. 

2. Here, as in [2], the general scheme for calculating the initial stages o f  propeller blade cavitation is based on the theory 
described in [8] and below only those features of  the calculations associated with the unsteadiness of the flow and the need to 

find the maximum possible value of  a are discussed. It should be emphasized that in [8] the effect of  viscosity on cavitation was 
investigated, only as the relation between the dimensions and conditions of  existence of  the cavities and the displacement 

thickness 6* and momentum thickness 8** of  the boundary layer; integral methods were used for calculating these thicknesses. 

For unsteady flows these methods would have to be modified and a new term c3[(1 -H1)Uf*]/Ot-b*OU/Ot , where H 1 is the 

ratio of  the thickness of  the boundary layer to 6" and U is the velocity at its outer edge, should appear on the left side of  the 

K~irm~in equation, while the equation itself should be transformed from an ordinary into a partial differential equation. However, 

as a rule, the initial stages o f  cavitation develop in a very small neighborhood of  the leading edge of  the profile of  length I,~ C 

and if the width of  the region of  nonuniformity z < C, then, since for t - z / U  we have U~ Dnr, 0 U2/Ox- U2/l, O(ub*)/Ot- 5" U2/z, 
it turns out that the new term in the K~rm~in equation is negligibly smaller than the rest. Therefore, by calculating Cp on the 
boundaries of  the displacement body and the cavity by means of  the Lagrange--Cauchy and not the Bernoulli integral, we need 
not otherwise correct the procedure for calculating the boundary layer characteristics as compared with [8]. 

The problem of  finding max tr involves the question of  what to take as the onset of  cavitation. Whatever the flow 

characteristics there are microbubbles drifting in the water or adsorbed on the body. The development of  these cavitation nuclei 
into cavities visible to the naked eye usually coincides with an intensification of  the hydrodynamic noise or lags slightly behind 

it and, for practical purposes, could be regarded as the onset of  cavitation. Since the corresponding cavitation numbers are 
random quantities, for determining their mathematical expectation experimenters have long been recording not the appearance 

but the disappearance of  cavities on the body with slow increase in the pressure in the oncoming flow [9] or the cavitation 

disappearance number (which often differs little from the corresponding number for the appearance o f  cavitation [10]). In 

accordance with this experimental practice, as in [8, 11], as a i we have taken the maximum value of the cavitation number at 
which a cavity attached to the body can exist. The effect o f  the gas content o f  the flow is not taken into account in the 
calculations, as justified for propellers in [2]. 

Finding tr i is a multistage procedure: after determining the Cp on the profile in the unsteady flow we sort out the pairs of  

abscissas of  the beginning and end of  the cavities and, as a result of  solving the quasiplane quasilinear problem [8] first find 
the corresponding values of  ~ and We for a given Re and construct nomograms, which are then used for interpolating the 

dependence of  the cavity length L on the cavitation number. 

In Fig. 3 we have plotted typical dependences of  L on o 0.5 in a uniform oncoming flow for various J, using the same 

numbering of  the curves as in Fig. 2. Here, in the top right-hand corner above the axis of abscissas to a dimensional scale we 

have shown in greater detail the parts of  the same curves corresponding to very short cavities. All these results relate to n =20 

sec -1 and to a propeller model with D = 0 . 3 5  m. 

The curves at the top of  Fig. 3 clearly demonstrate the presence of  a maximum of tr(L) due to the effect of  capillarity; they 

confirm the weak influence on the characteristics of very short cavities of  the significant discrepancy between the two- 
dimensional and three-dimensional pressure diagrams on the interval between the leading edge of  the profile and the zone of  
minimum Cp. This was to be expected since, even for full-scale propellers, the boundary layer there is still laminar, while in 
the underpressure zone its displacement thickness depends more strongly on the local pressure than on the previous history of  

the flow. Finally, the maximum of  a(L) can correspond only to small L, for which the recording of  the cavity by visualization, 
as, for example, in [10], is improbable and in this lies the principal reason why the visual recording of  cavitation often lags 
behind its acoustic detection. 

3. The results of  the approximate calculations must be compared with a control experiment. Below, as such an experiment 

we will use the measurements made for a propeller in the airfoil wake represented in Fig. 1. The comparison is made difficult 
by the fact that under laboratory conditions a moderately loaded propeller with D = 0 . 3 5  m, designed for J=0 .88 ,  begins to 
produce cavitation at much smaller J, i.e., at high loads for which the linear theory [1, 3] already gives significant errors in 
calculating Cp. Therefore, in Fig. 4 we have compared the values of  R i - -  the square root of  the ratio of  the critical cavitation 
numbers in the nonuniform and uniform flows: the chain curve corresponds to the calculations for an ideal fluid, the continuous 
curve to the calculations for the experimental conditions in accordance with the theory described, and the points to the 
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experimental data. 
While the general trend is preserved, as was to be expected, the calculated value of  R i is higher than the observed value, 

since it is more difficult to visualize short cavities in a pulsating nonuniform flow than in a steady uniform flow. The satisfactory 
agreement between calculation and experiment makes it possible to employ the theory described for analyzing the quasisteady 
approach to the prediction of  a i- 

This approach is based on the use of  cavitation diagrams of  the type reproduced in Fig. 5. The curve H represents the 

calculated function ~ri(J) for the propeller with D = 3 . 7  m in a uniform flow, and the curve M that for a model propeller with 
D=0 .35  m in the same flow. Precisely such curves are used in the quasisteady approach, in which the extrema of  J are first 

found from the Va(O) curve, after which the values o f  the critical cavitation number in the steady oncoming flow are found from 

these J. The results of  these quasisteady extrapolations for the oncoming flow represented by curve 7 in Fig. 1 are illustrated 

by curve 3 in Fig. 5. In the experimental construction o f  the diagrams at least three types of  errors are present. 

The first error is attributable to the scale effects and is confirmed by the difference between the M and H curves, which 

depends, in particular, on the shape o f  the blades and cannot be transferred from one object to another. The second is associated 
with the difficulty of  recording small cavities: curves 1 and 2 in Fig. 5 represent the calculated function c~(J') for cavities i and 
2 mm long, respectively, and it is clear how much cr i can be underestimated as a result of  a certain delay in recording the 

cavities. Therefore with the above-mentioned empirical approach to predicting a i one should in fact operate not with the H curve 

but with curves 1 or 2, or more accurately with their experimental analogs. In Fig. 5 the curves 1, 2, and M corresponding to 
laboratory conditions have been cut off  at J = 0 . 7 ,  since for higher J cavities are usually recorded on the blades of  the model 
later than in the vortices. 

The third error is associated with the unsteadiness of  the flow impinging on the blades and, on the basis of  the results 

presented above, it can be stated that for large loads and small J this error will be small. The situation is different close to the 

design regime: curve 4 represents the result of  the calculations for the blade of  a propeller with D = 3 . 7  m in the above- 
mentioned natural flow; in the calculations the values o f  J for this propeller were constructed using I f .  The values of  J 
constructed from V* are greater than 0.7 for real propeller operating regimes. Whereas when J < 0 . 7 5  curves 3 and 4 almost 
coincide, when J >  0.9 for the natural flow the theory proposed predicts the onset of  cavitation no longer on the suction but on 
the pressure side of  the blade, which is also responsible for the sharp bend in curve 4. Only with increase in the ratio of  n to 
the speed of  the vessel is it possible for cavitation to develop in the same form as under model conditions, i.e., on the suction 
side. The point in Fig. 5 represents the experimental value of a i under natural conditions. 
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Thus, in the quasisteady approach the critical cavitation numbers of the propellers may be considerably underestimated, 

and the predicted critical speed of  the vessel may be unjustifiably high, especially for near-design regimes. This result points, 

in particular, to the need to take a cautious approach to the optimization of  blade sections, for which methods developed for 
steady flow are currently being used (see, for example, [12, 13]). In view of  the persisting difficulties in extrapolating the 

experimental data it is preferable to carry out a theoretical cavitation analysis even after the initial unsteady problem has been 
substantially simplified as proposed. However, it should be stressed that, like all such methods, the method of  reducing the 
three-dimensional problem to a two-dimensional one described above is not universal. 

The authors are grateful to S. V. Kaprantsev for assisting with the experiments. 
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