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Propeller Blade Cavitation Inception Prediction and Problems of
Blade Geometry Optimization: Recent Research at the Krylov

Shipbuilding Research Institute

E. L. Amromin,' A. V. Vasiliev,' and E. N. Syrkin'

An analytical method for cavitation inception number predictions that is applicable also to blade geometry
optimization is described. Test and numerical data on fuli-scale propellers operating near the ship hull are
given along with model results from cavitation tunnel tests. The paper may be regarded as a general review
of research carried out and partially published in Russia during the past decade.

Introduction

A TRADITIONAL long-time requirement in propeller design
has been to achieve appropriate blade cavitation character-
istics. The need to reduce propeller-induced noise and vibra-
tions stimulated research on cavitation inception as early as
the 1950s.

Propeller cavitation may manifest itself in various forms
under different inception conditions and with different con-
sequences. The incipient forms are highly susceptible to scale
effects that cause major difficulties in laboratory testing in
regard to establishing a correlation between model data and
full-scale measurements. Numerical techniques also have
their limitations in cavitation inception prediction due to the
difficulty of computing blade pressures, even without the cav-
itation, and because of the lack of an adequate theoretical
understanding of incipient cavitation.

Therefore, the most common routine has been to apply a
semi-empirical method to translate model results into full-
scale values with the help of certain relations: “the scale ex-
trapolators.” This was done assuming that the cavitation in-
ception number was related to the Reynolds number as
o, ~ Rn™, with m being dependent on the form of the cavita-
tion but not on the blade geometry. The m-values were se-
lected from experimental data suggested by Billet & Holl
(1979) among others.

In addition, it was also assumed that with the same ad-
vance ratios J = V_/nD the model and the full-scale propel-
lers would have the same form of cavitation, and it was
thought allowable to use a quasi-steady approach to cavita-
tion prediction. Thus, ¢; would be determined assuming the
propeller was operating in a steady uniform flow with the
velocity equal to the extreme instantaneous values V_ of the
unsteady inflow. The latter assumption has enabled use of
uniform flow tunnel results to predict cavitation inception by
plotting model o,(J) curves from acoustic or visual data. The
range of J variations was normally taken according to the
range of propeller disk velocities from towing tank or cavita-
tion tunnel measurements.

Aiming at maximum efficiency, the designers tended to
choose Betz’s optimum radius-wise circulation distributions.
Such propellers had large load gradients on their blade tips
and, therefore, produced strong tip vortices. Their models
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showed cavitation at relatively high cavitation numbers. The
vortex cavitation was attributed the maximum scale extrap-
olator and was considered to be the most dangerous form. For
this reason the main design efforts were directed at reducing
the tip vortex intensity, which was achieved by (a) increasing
the number of blades and (b) unloading the blade tip sections.
Additionally, some special measures were taken to reduce
inflow nonuniformity at the top part of the blade.

Such propeller design techniques have been used in Russia
since the mid-60s and as a result the vortex cavitation incep-
tion numbers by late 1970s were reduced by three to four
times. Model tests were indicating that even with such de-
signs the tip vortex cavitation still preceded all other forms of
blade cavitation.

In the early 1980s a project was staged to make full-scale
observations on high-speed ships. It covered six propellers
with identical blade planes, load distributions, and blade sec-
tion profiles. The inflow parameters, in particular the values
of (Vi ax= Vinin¥V,,, were also almost identical. The only dif-
ference in trial conditions was in the unit hydrodynamic
loads. The relevant propeller geometry data may be found in
Table 1. The skew angle was 30 deg, the disk area AyA, =
1.15, and the blade section was close to the NACA-66 profile
but with slightly sharper leading edges.

In Table 1, f,,.. and ¢, are the dimensionless curvature
and thickness of the blade section, r is the relative radius,
and D the propeller diameter.

The full-scale observations revealed no expected tip vortex
cavitation on propellers with unloaded tips. When the tip
vortex cavitation nevertheless started, it was at speeds much
higher than predicted by scaling the model test data.

At the same time, suction side sheet cavitation near the
blade leading edges was observed to be the dominating form
of cavitation under full-scale conditions, although it has
never been reported when testing 200-mm-diameter (-8 in.)
models.

It was found that cavity distribution along the radius sig-
nificantly depended on the propeller’s unit hydrodynamic
load. At thrust-load coefficients of C, = 0.35-0.4 observers
have noted first flashes of cavitation at r = 0.9-0.95 and with
C, increased to 0.6-0.7 the cavities started appearing at r =
0.6-0.7 (Fig. 1). The relevant velocity distribution from tow-
ing tank measurements is shown in Fig. 2.

Thus, full-scale observations disclosed that the traditional
semi-empirical approach was not applicable for propellers
with improved cavitation performance, that the adopted as-
sumptions were invalid, and that the forms of cavitation on
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Table 1 Propeller geometry parameters

r 0.25 0.3 0.4 0.5 0.
P/P(0.T) 1.130 1.12 1.100 1.067 1.
2f tnax!D 0.0072 0.0110 0.0168 0.0189 0.
2t 0.078 0.072 0.0585 0.0490 0.

ma;

6
0
0
0

0.7 0.8 0.9 0.95 1
4 1.0 0.933 0.893 0.747 0.620
181 0.0156 0.0125 0.0070 0.0033 0
430 0.0390 0.0364 0.035 0.0324 0

model and realistic propellers were quite different. This con-
vinced the researchers that model cavitation tests were a
doubtful tool for blade optimization and that new efforts
should be made to find a correct computational technique to
predict full-scale incipient sheet cavitation.

Fortunately, by the 1980s the grounds for developing such
methods were available.

First, the numerical methods for blade pressure distribu-
tions without cavitation offered by Greely & Kerwin (1982)
and Bavin et al (1983) have already been sufficiently well
established.

Second, the experimental studies on incipient forms of cav-
itation for bodies of revolution carried out by Arakeri (1975)
and Arakeri & Acosta (1976) have shown a deeper physical
understanding of the phenomenon. This allowed Amromin
(1985,1988) to develop a method for computing partial cavi-
tation based on the two-dimensional viscous separation the-
ory offered by Gogish & Stepanov (1982) and Ivanov’s (1983)
method for jet problems in ideal fluid.

Since a method to calculate full-scale o; was made avail-
able, it became possible to optimize propeller blades based on
performance predictions for cavitating propellers behind ship
hulls.

The method is described briefly in the following together
with a discussion on its practical applicability to 6, compu-
tations, including a comparison of numerical results with
full-scale propeller measurements.

Review of viscous fluid cavitation theory;
method for sheet cavitation
numerical prediction

Until recently the cavitation inception number was found
theoretically, assuming that cavities were negligibly small in
respect of o,. This assumption was implicitly or explicitly
present in many attempts to predict o, through the isolated
bubble evolution in a known pressure field or to study pres-
sure distribution and fluctuations prior to the onset of cavi-
tation. Such attempts have inevitably failed to reach a sat-
isfactory agreement with experimental data.

The fact is that though cavitation numbers close to o,, cav-
ity dimensions are really small compared with the length and
diameter of the involved body, the cavity thickness turns out
to be of the same order as that of the boundary layer. There-
fore, even a tiny cavity is capable of sizably affecting pressure
distribution within the nearby part of the body surface.

The authors have derived a way to account for these
changes induced by cavity-to-boundary layer interactions.
This technique for computing ¢, involves a concept long used
for the purpose in experimental studies: selecting the maxi-
mum cavitation number o, from a test series with decreasing
velocity or increasing pressure of the inflow. The authors
realize that this actually gives them the cavitation cessation
number, but when the wake air content is not too high this
number normally differs from o, only slightly. This difference
was experimentally studied by van Meulen (1980) and the
same concept was advocated by Huang & Peterson (1976) in
their calculations. However, the latter exercise was not ex-
actly accurate in accounting for the interaction between cav-
ities and the boundary layer and was based on the theory
described by Gourevitch (1970) with the cavity inception
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position being removed. Gourevitch’s dependence on the po-
sition of cavitation inception versus the laminar-turbulent
transition in the body’s boundary layer lacks strong substan-
tiation and there are many contradictory experimental re-
sults.

Gorshkov & Kalashnikov (1970), for example, have ob-
served cavitation inception on a 16th caliber body of revolu-
tion only long after the transition, while van Meulen (1980)
reported it to occur much earlier than the transition. Exper-
imental results obtained by Arakeri & Acosta (1976) speak
directly against the idea of this dependence; they've had a
situation when a turbulence stimulator provoked earlier
transition but suppressed the cavitation inception.

To illustrate the major points of our new theory a corre-
sponding flow scheme is shown in Fig. 3. It will be further
used for comparison with the famous theory of “ideal cavita-
tion” (in Birkhoff’s terminology).

The authors resolve the cavitation problem through the
concept of viscous-potential interaction according to which
the flow is divided into a potential flow zone and a boundary
layer with their separating margin being unknown. In the
new theory the cavity and the potential flow margins are
separated by the boundary layer. Under the ideal cavitation
theory these boundaries coincide.

According to the ideal cavitation theory, the cavity bound-
ary merges smoothly with the body’s outline always remain-
ing normal to it. The authors take into account the fact that
due to the capillarity in real fluid there is a certain angle B
between the cavity margin and the surface of the body placed
in the flow (Fig. 3). This B-angle depends on the body’s wet-

tability.

Ct=04s5
G =028

Ct =067

G=0,32

Fig. 1 Forms of cavities on full-scale propellers blades
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Fig. 2 Axial velocity distribution from towing tank model measurements

A%

Cp

1. section of flowing body

2. boundary layer border

3. displacement body boundary
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5. cavity boundary

Fig. 3 Cavitation flow on viscous and capillar fluid. Arrows show direction of fluid
transfer through cavity boundary

The B-effect in displacing the cavity starting point was es-
tablished by Ivanov (1980) during his experiments with an
ellipsoid of revolution assembled from two parts of different
materials. For the Teflon®™ (trifluoroethylene) part he found
B = n/2; for the aluminium one it was B = 0. The difference in
B-angles resulted in shifting the cavity starting point for
more than 0.1 of the ellipsoid’s diameter. Amromin (1993)
published the relevant computations in his first paper on this
subject describing some of the early results made jointly with
Ivanov in 1982 in the “Doklady” of the USSR Academy of
Sciences.

With the kind of attachment of boundaries explained in the
foregoing, a viscous separation zone is formed in front of the
cavity. This was demonstrated experimentally by Arakeri
(1975); the zone is shaded in Fig. 3.

In ideal cavitation the cavity boundary is completed by an
imaginary body (e.g., under Riabushinsky’s scheme) or back-
streams which carry the fluid out of the flow plane. The new
scheme also contains a backflow stream which causes an-
other separation zone (also shaded in Fig. 3). However, in
this theory the fluid travels across the cavity boundary and
into its boundary layer like that shown by an arrow in the
scheme.
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The ideal cavitation theory assumes that the potential-flow
coefficient remains constant anywhere along the cavity
boundary: Cp = —c. Approximate Cp values computed accord-
ing to the new concept are shown in Fig. 3. There the Cp(x)-
function has two zones with increasing pressures at the cav-
ity ends and a practically isobaric area at the mid-part of the
cavity boundary, that is:

Cilx-x,-e-c forap<x<zx,+e

-0 forx, +e<x<x,y

Cp=

Cylx —x,° - for x, < x < x4

where the € < x, — x, distance here is initially unknown.
Naturally, among the first priorities is to find numbers C,,
C,, as well as the x, and x5 longitudinal coordinates of the
front and aft points of the separation zone. An unknown
value within this zone is A—the distance between the body
and the potential-flow S margin. The condition relevant for
it is

Cp=1-(VO,V®) = Flx, Cy, Cy, xo, x1, %, X3) 1)

To compute A it is necessary to apply a boundary condition of
zero normal velocity for a displacement body in [x,,x;]. This
requires distributing intensity sources on the body’s surface.
The g(x)-function is found from the above condition (1) using
the singular equation theory described in Newman’s book
(1977). Then A may be obtained from:

9 d(hU*)
1=°7q
where [ is the arc length and U* the potential cavitation-free

flow velocity on the surface of the body.
Y can be found with the help of the Laplace formula:

Cp + 0 = 2kWe! (3)

The Weber number (We) is generated according to the typ-
ical body size C. The cavity boundary curvature x contains
the second derivative of Y. Therefore, (3) is an ordinary sec-
ond-order differential equation for Y, and to compute Y two
conditions should be satisfied at the x = x; point:

(2)

Y ay tg(B) (4),(5)
=Y dl - g(B ’

However, to establish Cp and to calculate g from (1), it is
necessary to have six parameters {C,, C,, x,, X1, X5, x3}. It is
more convenient to assume {o, We} unknown and to assign a
couple of numbers {x;, x,}, but anyway six conditions would
be needed to determine the six parameters. The following
conditions are chosen for this purpose.

* The condition of viscous-potential interaction:
8*(x5) = hlxs) (6)
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» The condition of the boundary-layer attachment to the
cavity at a distance e from the stream separation point:

Yx,+e)=h(x; +€) - &%x + € (7

» Local conditions of the boundary-layer separation and
reattachment before and after the cavity:

5 1 3
|5 |;| c dU|;| 8*2Re dU | 7
0-%=601cl | g pa UC di
8)
12[B — 8*(x5)] " 2P[8%(xg + €,)1°%° = (x5 — 20025 — %1 — e)°-5( )
9

where 8* is the displacement thickness, B the maximum cav-
ity thickness, U = — 0®/dl, L = x5, — x,, and ¢; — 0. The
continuity condition at the x-point:

oU/l(xy + €,) = U/l (x — €;) (10)

* The f; of ¢ limitation anywhere within [x,, x3]:
o fs(x)dx o
%o \/(x — xp)xg — x)

The rule for generating the flx) function in equations similar
to (1) has been explained by Newman (1977).

The above conditions (7)—(9) contain a new unknown func-
tion 6*. This may be found from the Karman equation written
for the cavity boundary as

de*  dU (28%* + %) V0<1 u0> .

(11)

a “da U U U (12)
The authors suppose Vyx) = Vi[(x — x; — e)(xy; — 2, — €)F,
where v, is an unknown constant. Amromin (1985) has
shown the influence of p upon L(c) to be weak and, therefore,
it is possible to assume p = 1.

The cavity boundary friction is negligible but the velocity
components {«,, Uy} here are not equal to zero. There are four
unknown functions in (12), but assuming a velocity profile of
a relevant wake type it is possible to express §** through &*
and uy/U.

Amromin (1985) found that the v(x) distribution produced
only a slight effect upon the cavity configuration while the
total flow rate through the cavity side surface corresponded
to the time-average quantity of the fluid brought by the back-
flow stream.

To compute U it is possible to apply Prandtl’s equation for
the zero function line:

du,
“0 g =

(U - up)? dUu 5
e Vg 13
where K is constant.

The inputs required for (12) are taken from the body
boundary-layer calculations for the upstream from the cavity
region. That may be done utilizing any of the existing meth-
ods.

Thus, equations (1)-(3), (12), and (13) for functions (i, &%,
Y, q, h} with eight supplementary conditions (4)-(11) for pa-
rameters (v, X,, €, X3, C;, C,y, 0, We} are sufficient to solve
viscous cavitation problems. A more detailed description of
the computation procedure may be found in the earlier men-
tioned paper by Amromin, Vasiljev, and Droblenkov.

The new theory also permits us to involve more input data.
It is now possible to account not only for ¢ but for the values
B, Rn, We and the inflow turbulence as well. It is possible to
find C-values and Ve inflow velocities for each pair of
{Rn,We} corresponding to the same ¢-values. The computa-
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tion procedure for this theory was thoroughly described by
Amromin (1993).

Maybe some time in the future there will be as many
schemes available for the viscous streams in the cavity after-
part as there are now in the ideal fluid stream theory. How-
ever, we don’t yet have them. Neither do we have information
about utilizing any computation procedure for partial cavita-
tion, e.g., the scheme offered by Tulin & Hsu (1980).

Therefore, the authors will now attempt to compare their
numerical results with the available experimental data. The
correlation between the computations carried out under the
new concept and test data is described below.

The data related to cavity location on a body of revolution
with a hemisphere-shaped bow part may be seen in Fig. 4.
The experimental results for this most simple and popular
configuration are available in many papers, starting with the
one by Knapp, Daily, & Hammit (1970). However, all data
refer to Rn = 6.10° and 2-in.-diameter models.

The ideal cavitation theory (Fig. 4, dashed line) greatly
overestimates the cavity dimensions with the increase in o,
thus sizably overestimating ¢, = max 6. When the cavity
length L is sufficiently large, the ideal cavitation theory pre-
dictions are rather accurate but still worse than those pro-
vided by the new theory. All these calculations were made for
B = 0, which corresponds to metallic bodies. Comparing the
ideal cavitation analytical predictions with test data of an 8%
wing profile, one may observe a stronger discrepancy in the
cavity after-edge longitudinal position x4(c).

In this example the situation is complicated by the lifting
force and the sharp change of pressure on a small part of the
body. Experimental results from Yamaguchi & Kato (1983)
are shown in Fig. 5, which indicates the scatter in measure-
ments. The success of the new theory in establishing x, comes
largely thanks to the ability to account for the Rn effects
upon the profile’s Cy. To compute the Cy(Rn, o)-function the
authors use an analytical approximation of wing profile cal-
culations originally suggested by Mishkevitch and published
later by Mishkevitch, Amromin, & Rozhdestvensky (1990).

Such an advance in cavitation calculations for bodies in
viscous flow holds promise for achieving satisfactory results
in o; predictions. The o(L) function shown in Fig. 6 corre-
sponds to partial cavitation calculations for propeller blade
cylinder sections. It may be seen that ¢, was achieved by L >
0 due to capillary effects. For a thin profile with a not very
high value of Cy the 6 maximum would come at an L-value
too small for visualization. This may be a possible cause of
errors in experiments and underestimations in o, predic-
tions.

For the hemispheric-bow bodies of revolution the minimum
L-values are considerably larger and the Cp(l) plots become
smoother. This allows us to assume that Fig, 7 shows a quite
correct comparison between such analytical results and the
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Fig. 4 Cavity location on a hemispherical bow body of revolution
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measurements reported by Gorshkov & Kalashnikov (1970)
and Arakeri & Acosta (1976). Arakeri & Acosta have given a
satisfactory theoretical description of their experimental re-
sults with a turbulence stimulator. The paradoxical disap-
pearance of cavitation with increasing V. at C = const was
explained by the influence of the boundary-layer flow regime
upon the conditions of its separation before the cavity and the
cavity’s equilibrium. There have been sharp changes in the
cavity dimensions at just the same Rn because of altering the
above-mentioned conditions by introducing a turbulence
stimulator: In a turbulent boundary layer the cavities are
shifted into the domain of larger dCp/d! and smaller suction
values.

Practical applicability for incipient blade
cavitation calculations

It is important to emphasize that the aforementioned nu-
merical cavitation predictions for two-dimensional axisym-
metric steady flows have been achieved largely due to the
sufficiently accurate computation procedure for Cp at fixed
potential flow boundaries. Certain aspects make it more dif-
ficult to reach similar accuracy in propeller blade Cp calcu-
lations, among them: sophisticated blade geometry requiring
a huge computer capacity for precise calculations, viscosity
effects on blade load distribution, nonuniform inflow causing
unsteady flow around the blades, cavitation effects upon
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Fig. 7 Function o, (Rn) for a hemispherical bow body for low-air-content wake
experiments with turbulence stimulators. Curve numbers correspond to experi-
mental points

blade surface pressure distribution, and direction of stream-
lines near the edges.

The authors regret their inability to overcome all these
difficulties. However, they’'ve managed to escape them inso-
far as propellers with low cavitation inception numbers are
concerned, and the ways to reach this target are described
below.

With such propellers during the initial stage of cavitation
the cavities remain close to the leading edge at relative radii,
yet far from 1, while the cavity thickness is much less than
that of the blade at the same radius. Therefore, it is allowable
in this problem to suppose that the potential-flow stream-
lines do not deviate far from the cylinder blade sections and
the cavity thickness does not significantly affect the lift of
these sections. Under these assumptions the computation of
a three-dimensional cavity on the blade may be divided into
two parts. First is the calculation of the blade pressure dis-
tribution Cp(x,r) in viscous unsteady cavitation free flow, and
second is the aggregation of thin two-dimensional cavities on
cylinder blade sections with known inflow velocity U* (x,r) =
(1-Cp* (x,r)°®, Rn(r), We(r), and B and n which are common
to the whole blade.

In this second part of the problem

Cp(x,r) = Cp* (x,r) - 2U* (x,r) u(x,r)

where u(x,r) is the contribution of sources and sinks simulat-
ing the thin cavity and the separation zone computed indi-
vidually for every section.

The efficiency of such problem division was demonstrated
by Amromin, Mishkevitch, & Rozhdestvensky (1990) on the
propeller tested by Kuiper (1981). The results are shown in
Fig. 8, where the continuous line marks the cavity boundary
photographed during the experiment; the dashed line indi-
cates the computed boundary. A sizable discrepancy between
tests and predictions at r — 1 may be ignored in o, calcula-
tions since the cavitation appears here only at r = 0.5-0.8.
However, Fig. 8 is for the uniform flow available in hydrody-
namic tunnels. To compute pressure distribution on propeller
blades in nonuniform flow is another quite difficult task. The
methods utilized so far need preliminary hydrodynamic load
distribution calculations based on the unsteady vortex lift-
ing-surface theory. The processes involved in propeller oper-
ation close to the hull are periodic. This permits us to com-
pute hydrodynamic characteristics with the help of Fourier
series, though the actual velocity fields are rather compli-
cated and we are forced to compute a great number of
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Fig. 8 Comparison of photographed and calculated cavity boundaries on propel-
ler blades

terms for the series. This makes pressure distribution calcu-
lations extremely cumbersome. Unsteady nonlinear meth-
ods, besides demanding great efforts to generate proper nu-
merical models, call for the use of supercomputers. The latter
is necessary in order to cover the vast number of calculation
points required to obtain reliable results near the blade
edges.

It was found convenient to divide the inflow into two parts:
one with high velocity gradients and another with low ones.
This opens an opportunity to combine two methods: one the
above-described steady-flow technique, and the other a two-
dimensional calculation for a profile in a flow gust of an ar-
bitrary shape of the U(¢)-function. This way it is possible to
separate the three-dimensional and the unsteady flow ef-
fects. The Cp*(x,r) calculation is then also split into two
tasks.

The first task is to compute blade pressures at given Rn
and the advance ratio J in uniform inflow. This is done by an
approximate method based on the following concepts. The
pressure near a blade or foil-rounded leading edge may be
computed by the method of Cole (1968), that is, joining of
asymptotic analytical solutions for the edge vicinities with
the linear theory results for the mid-part of the involved
blade or foil. The effects of Rn upon Cp near the edge may be
covered within the ideal fluid assumptions by the angle-of-
attack dependence, that is, by violating the Kutta-Joukowski
condition. Figure 9 shows the predictions computed with
such a violation against the measurements reported by Ya-
maguchi et al (1983). The comparison indicates a better

Cp
4
-2 z>\\
[/} 02 04 a6 Vx

@® measurements

1 ideal fluid calculation

2 calculations with Mishkevitch’s correction factor
9

Fig. Infiluence Rn on pressure distribution for a wing profile
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agreement within the leading-edge vicinity and a significant
influence of Rn upon Cp* in this region.

For the second Cp calculation task—the same as in the
paper by Amromin, Vasiljev, & Syrkin (1993)—it is assumed
that the unsteadiness of the inflow causes only local pressure
variations and their contribution may be found with the help
of a representative two-dimensional profile concept. Since
the most difficult part of this problem is to precisely compute
C# close to the maximum suction points, the authors main-
tain the same cylinder blade section geometry as before. In
the formula for the ® potential of the flow arriving at these
sections:

O=0, (¢ x, y)—x + ay + bxy (14)

they take a,b coefficients for each {J,r} pair to maintain the
same Cy(r,J) and minC?*(x,r,JJ) as already calculated for the
three-dimensional steady flow at ®;, = 0. The ®; function
describes the inflow unsteadiness related to its nonuniform
nature. Figure 10 proves that for the maximum suction point
vicinities this two-dimensional theory produces results quite
close to those of the three-dimensional concept.

Amromin, Vasiljev, & Simeonitcheva (1991) have tested
this numerical procedure against Jorber & Covert’s (1982)
data. Figure 11 confirms that the analytical solution did not
overestimate unsteady flow pressure fluctuations and, there-
fore, may be used for Cp calculations.

Evaluation of quasi-steady assumption
applicability for predictions

The described method for computing propeller blade Cp in
uniform inflow has been checked against model tests and
full-scale cavitation inception observations. At the same
time, the authors studied the applicability of the quasi-
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Fig. 10 Comparison of pressure profile on blade sections in uniform 3D flow
(dashed line) and in “equivalent” (according to {minCp,Cy} value) 2D flow (solid
line)
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tudes in unsteady flow

steady approach to the problem described here in order to
define the conditions which make it necessary to involve the
unsteady flow effects in critical cavitation number evalua-
tions and blade optimization.

As mentioned above, sheet cavitation has never been ob-
served on 200-mm-diameter (-8 in.) models. Some tests were
staged at the Krylov Institute in the large cavitation tunnel
with models of 350 and 400 mm (~14 and 16 in.). Then sheet
cavitation was achieved but only at rather small advance
ratios, i.e., at high loads (see Fig. 12) when the linear theory
errors in Cp predictions are already quite sizable.

Computations to test the comparison show that the new
theory is in good qualitative agreement with experimental
results for the reason that it correctly reflects tendencies of
changes in the cavitation diagram plotted in terms of {c%° .J}.
The traditional semi-empirical cavitation prediction method
has already failed to do that.

The ability to account for viscous and capillary effects pro-
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Fig. 12 Propeller model cavitation diagram
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duces improved quantitative agreement between the analyt-
ical and experimental results. This may be seen in Fig. 13,
which shows Ri values, i.e., the square root of the ratio of
critical cavitation number for uniform and nonuniform flows.
Here and in the following description the cavitation numbers
are referred to the nD product and not to the inflow velocity.
The flow nonuniformity in Fig. 14 was caused by the wake
left by a foil.

A certain overestimation of Ri compared with observations
may be explained by the difficulties in visual detection of
very short cavities in a fluctuating flow.

Calculations of 6, for full-scale blades have revealed limi-
tations of the quasi-steady concept for establishing o,(J). This
part of the discussion relates to the “A” propeller, one of the
two described in Fig. 15. The relevant wake distribution for
the ship model is shown in Fig. 2.

Figure 16 demonstrates a comparison of the following re-
sults: model diagram for uniform flow; its quasi-steady full-
scale prediction corresponding to the local instantaneous J
computed through Vx(8) distribution; predicted full-scale di-
agram; and full-scale observation.

It may be seen that steady-flow predictions are close
enough to the unsteady ones within the left branch of the plot
where they belong to the suction-side cavitation. The situa-
tion here is not changed even by the above-noted effects of the
unsteady flow around the blade shown in Fig. 17. The slower
incoming wake zone is here smaller than the blade chord
length and the suction peaks are due to the passage of blade
leading and trailing edges through this zone. However, the
depressurization value on the suction side is in good agree-
ment with the velocity in the zone. The discrepancy in the
pressure side predictions is quite high. This may be ex-
plained by the unsteady flow effects neglected in cylinder
blade section design when the calculations were made for a
fixed range of angles of incidence, ignoring the dynamics of
their fluctuations due to rotation.

The authors do not have a means of computing the vortex
cavitation. In this regard they have analyzed the flow non-
uniformity effects on o; by testing 200-mm-diameter model
propellers with different design circulation distributions
along the radius. The first model had Betz’s optimum distri-
bution; the second one had unloaded blade tips (other param-
eters were common to both models: z = 5; skew = about 30
deg; Ay/A, = 1.15). The tests were staged in a small cavitation
tunnel (diameter = 0.4 m; Rn = vDr/v = 8.7 - 10°, air content
= about 1.5%). The setup involved a uniform flow and two
nonuniform flows: with a smooth gradient of velocities versus
the angle of rotation (propeller in oblique flow) and with
sharp velocity gradients (a narrow wake zone behind a foil or
an appendage).

Ls /

wo,s

dashed line
solid line

0.55 J

ideal flow calculations
for viscous flow catculations

Fig. 13 Ratio of ¢, in uniform flow and in foil wake
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Fig. 15 Geometric characteristics of two blades

For the propeller with optimum (according to Betz) circu-
lation distributions the displacement of the left branch of the
diagram due to the nonuniform flow distribution was less
than in the case of quasi-steady predictions but correlated
with the change in thrust coefficient. The model with the
unloaded blade tips did not respond to the narrow peak of
wake distribution (Figs. 18,19).

Therefore, it may be concluded that the quasi-steady con-
cept is not applicable for predicting tip vortex cavitation on
unloaded-tip propeller blades. The physics of this phenome-
non may be explained by specific features of tip vortex for-
mation inherent in such propellers. With a Betz-optimum
propeller an intensive tip vortex forms due to the stream
around the tip edge caused by the high-circulation gradient
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unsteady calculation for full-scale conditions
full-scale experimental point

| el

Fig. 16 Propelier cavitation diagram

in this area. On a propeller with unloaded tips the tip vortex
appears because the vortex sheet is rolled up in the flow
behind the blade. This was confirmed by observations during
cavitation tunnel tests: the first bursts of cavitation appeared
not on the blades but at a distance downstream from them
and this distance was larger than would be necessary to ab-
sorb air bubbles into the vortex core in the case of gaseous
cavitation.

On blade geometry numerical optimization

The lack of tip-vortex cavitation under full-scale conditions
has forced the authors to reconsider blade geometry optimi-
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zation principles and ways for further improvement of pro-
peller performance cavitation-wise. Special attention was
paid to the design of blade section profiles. A method offered
by Alexandrov (1980) and producing results similar to the
results of Eppler & Shen (1979) has become widely used at
the Krylov Institute. It was also realized that the radius-wise
circulation distribution should be selected so as to ensure a
uniform distribution of minCp because superfluous tip un-
loading led to early cavitation inception at r = 0.5-0.8 radii.
Moderately skewed blades have shown themselves to be an
efficient way to delay cavitation inception.

Assuming that the engine parameters (power,rpm), hull
resistance, propeller-hull interaction coefficients, wake dis-
tribution in the propeller disk, and propeller diameter are
known, the task is to design the blade section profiles while
the blade-area ratio and hence the blade breadth are chosen
so as to prevent the second stage of cavitation; blade thick-
ness is dictated by stress analysis. The most difficult task is
to correctly select a pair {Kt,J} for the fixed hydrodynamic
diagram such that optimum distributions of pitch and max-
imum camber along the radius would be achieved, providing
for as low o, as possible. And here the choice of optimum
design conditions turns out to be inseparable from the o;
prediction technique involved.

It has been emphasized already that the semi-empirical
method of critical cavitation number prediction is not appli-
cable for the propellers with unloaded blade tips. Still, there
remains another problem: How good are the design optimi-
zations based on this method? It may be considered that the
design condition optimization is properly grounded so long as

the centers of the cavitation diagrams from both the model
and full-scale results come to the same point in spite of the
difference in the cavitation forms.

In reality however, (see Fig. 12), one may note a sizable
shift of this center in the case of the sheet cavitation towards
the larger advance ratios compared with the vortex cavita-
tion. Therefore, the propellers optimized in order to remove
cavitation inception based on model tests turn out to be not
quite optimal in full scale.

A special project involving two propellers was staged to
evaluate the possibilities of reducing further the cavitation
inception number through blade geometry optimization by
computation. The first propeller (A) was optimized based on
data from testing 200-mm and 300-mm-diameter models; the
second propeller (B)—on the basis of numerical full-scale pre-
dictions. Both propellers were designed to achieve the same
hydrodynamic performance and had the same diameter (3.74
m), blade planes, and section profiles.

Propeller A was designed for K, = 0.165 at J = 0.91, pro-
peller B for K. = 0.18 at J = 0.86. The geometry is shown in
Fig. 15; the section profile is described in Table 2. Full-scale
observations revealed that the use of a more adequate theory
has allowed design of a propeller with a 20% lesser critical
cavitation number. As already mentioned, the computed re-
sults were also in good agreement with the observations in
respect to cavity location. In particular, the following numer-
ical predictions were confirmed. The cavities appeared simul-
taneously everywhere along the radius, except for the blade
tips at r > 0.8. There were practically no short-length cavi-
ties; with the speed increase the cavity length practically
immediately grew to 8% to 10% of the blade chord (see full-
scale cavity drawings in Figs. 20,21).

Therefore, it was confirmed that the developed method was
applicable for computing full-scale cavitation numbers with
the aim of blade geometry optimization.

Conclusions

The recent review of cavitation inception research pub-
lished by Rode (1991) threw a new light upon this complex
phenomenon and all varieties of its manifestation in model
tests. The author of that review has made a pessimistic com-
ment that a successful computation of 6, can result only after
long years of detailed calculations of phase transition and
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Table 2 Reduced blade section parameters

2x/C t/tmax f/fmax
-1 0 0
-0.95 0.147 0.081
-0.9 0.226 0.166
—0.8 0.371 0.352
-0.6 0.613 0.691
0.4 0.799 0.881
-0.2 0.923 0.973
0 0.989 1.0
0.122 1.0 0.988
0.2 0.994 0.97
0.4 0.941 0.881
0.6 0.826 0.731
0.8 0.632 0.506
0.9 0.483 0.343
0.95 0.384 0.248
0.975 0.284 0.167
0.99 0.1634 0.08
1 0 0

Fig. 20 Cavitation inception pattern on full-scale propeller A; ¢ = 0.16

large-scale turbulent structures. The authors of the present
report do not expect fast and easy success in finding any sort
of a universal theory; it is enough to read Briangon-Marjollet
et al (1990) to see the stunning variety of cavitation forms on
the same wing tested in one and the same cavitation tunnel.
However, the present report once again demonstrates that
some of the major values required for routine engineering
can be numerically predicted without the knowledge of cer-
tain details even for unsteady processes.

It should be also explained why the authors have ignored

SEPTEMBER 1995

/

Fig. 21 Cavitation inception pattern on full-scale propeller B; ¢ = 0.13

in their computations the gas content, the nuclei content, ete.
Of course the authors are aware of the effects which can be
caused by a high nuclei content upon cavitation inception in
tunnel tests. The point is that at ram values in the stream
around the full-scale blades the s-number is very close to the
Euler number even for the gaseous cavitation. That is why
the dispersion of the random process of cavitation inception
turns out to be so much smaller than o, that it is actually lost
among other errors.
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